Here we will Solve Large Sparse Matrix System with Iterative Methods to obtain the solution and will see an application of it.

OBJECTIVE

Simulate the natural shape of a Soap Film clinging on a frame with sides \(0,\ x,\ 1,\ x^3\). Use 50 sub-divisions for each side.

SYSTEM OF EQUATIONS

To find the natural shape of the soap film we should minimize the surface tension. The Elastic Potential Energy is given by -

\[ E(u)\ =\ \int\int_R{(u_x)^2\ +\ (u_y)^2}\ dx\ dy \]

where, \(u(x,y)\) denotes the surface of the the soap-film.

\(E(u)\) needs to be minimized so that it satisfies the boundary condition that the \(u(x,y)\) must match the frame height at the boundary.

We will solve the above posed problem numerically.

We first triangulate the base into smaller parts and then we obtain cone shaped(better to call them pyramids) basis functions for each elevated point to a height of \(1\).

Above we can see 2 such examples of basis cones. Now, we observe each basis cone is made up of planes, pertaining to the triangles which became slanted to pop that basis cone up. So, we can write each basis cone as -

\[ \phi(x,y)\ =\ \alpha_{ij}\ +\ \beta_{ij}.x\ +\ \gamma_{ij}.y\ ,\ \forall\ (x,y)\in\ T_i \]

where, \(T_i\) indicates the triangular section which is a part of the basis function, if some \(T_k\) is not a part then the coefficients will be \(0\).

Hence, we can now approximate the shape of the soap-film as linear-combination of these basis functions viz.

\[ u(x,y)\ =\ \sum_jc_j.\phi_j(x,y) \]

Thus, the problem reduces to finding \(c_j\ 's\) .

We can now work on minimizing Surface Tension.

\[ E(u)\ =\ \sum_i\int\int_{T^o_{i}}(\sum_j c_j.\beta_{ij})^2\ +\ (\sum_j c_j.\gamma_{ij})^2\ =\ \sum_i|T_i|.((\sum_j c_j.\beta_{ij})^2\ +\ (\sum_j c_j.\gamma_{ij})^2) \]

where, \(|T_i|\) denotes the area of \(T_i\).

Thus, we see the above final expression is nothing but a Quadratic Form. So we can write,

\[ E(u)\ =\ c'Mc \]

where \(M\) is the \(N.N.D.\) matrix with \((j,j')\)-th entry given by -

\[ m_{j\ j'}\ =\ \sum_i|T_i|.(\beta_{ij}.\beta_{ij'}\ +\ \gamma_{ij}.\gamma_{ij'} ) \]

Now, we know the boundary heights so we can partition \(c\) as \((c_1, c_2)\). Then \(c_2\) is known and \(c_1\) is to be chosen to minimize \(E(u)\).

So, we can partition \(M\) accordingly as-

\[ M\ =\ \begin{bmatrix} M_{11}&M_{12} \\ M_{21}&M_{22} \end{bmatrix} \]

Then, Differentiating the Quadratic Form gives us -

\[ M_{11}.c1\ =\ -M_{12}.c_2 \]

Now, \(M_{11}\) is a Sparse-Matrix, but it happens to be non-singular. So, we can obtain a unique solution. We will be using Iterative Algorithm to solve this part.

SIMULATION CODE & RESULTS

# Number of partitions on each side
n <- 50

# Creating the boundaries of the square
edge.1 <- rep(0, n+1)
edge.2 <- seq(0, 1, length.out = n+1)
edge.3 <- edge.1 + 1
edge.4 <- edge.2^3

# List of all the boundary heights
c2 <- c(edge.3)
for (i in 2:n) {
  c2 <- c(c2, rev(edge.4)[i], rev(edge.2)[i])
}
c2 <- c(c2, edge.1)

# |-----Edge.3------|
# |                 |
# |                 |
# |Edge.4           |Edge.2
# |                 |
# |                 |
# |-----Edge.1------|


z <- c(edge.1, edge.4, edge.3, edge.2)
x <- c(edge.2, edge.3, rev(edge.2), edge.1)
y <- c(edge.1, edge.2, edge.3, edge.2)

bd.frame <- tibble(x = x, y = y, z = z)

# ---------------------- +ve X-axis
# |
# |    Z-axis is outwards
# |
# | -ve Y-axis

# Initializing some important stuffz
gap <- 1/n
T.area <- 0.5 * gap * gap # Area of the triangle
nbdpts <- length(c2)
pts <- (n+1)*(n+1) # All the points
nt <- n*n*2 # Number of triangles


# ---------------------- +ve X-axis
# |1 \ 2| 3\ 4| 5\ 6|7 \ 8| ---> My triangualtion is something like this  
# |9 \10| Z-axis is outwards
# |
# | -ve Y-axis

# A  F
# B 1 E --> 1 indicates a point and A,B,C,D,E,F refers to the triangles surrounding it in the resp. direction
#  C  D
# Let us code A-->1, B-->2, C-->3, D-->4, E-->5, F-->6

# Here I have changed the numbering pattern of the matrix a bit --> Interior points first are numbered to make partitioning easier
# 10  11  12  13  14
# 15  1   2   3   16
# 17  4   5   6   18
# 19  7   8   9   20
# 21  22  23  24  25
triangle.point.map <- matrix(rep(0, pts*nt), pts, nt) # Creating Points --> Triangle Numbers of which it is a part of
triangle.point.map.number <- matrix(rep(0, pts*6), nrow = pts, ncol = 6)

# Finding the edge points
edge.4.points <- c((n-1)^2 + 1)
edge.2.points <- c()
edge.1.points <- c((n-1)^2 + n + 2 + 2*(n-1))
edge.3.points <- c((n-1)^2 + 1)
for (i in 1:n){
  edge.4.points <- c(edge.4.points, (n-1)^2 + n + 2 + 2*(i-1))
  edge.2.points <- c(edge.2.points, (n-1)^2 + n + 1 + 2*(i-1))
  edge.1.points <- c(edge.1.points, (n-1)^2 + n + 2 + 2*(n-1) + i)
  edge.3.points <- c(edge.3.points, (n-1)^2 + 1 + i)
}
edge.2.points <- c(edge.2.points, pts)
bd.points <- c(edge.1.points, edge.2.points, edge.3.points, edge.4.points)

# Filling triangle.point.map
for (i in 1:pts) {
  # Marking All the interior points
  if (!(i %in% bd.points)) {
    if (i %% (n-1) == 0) {
      triangle.point.map.number[i, 3] = (i%/%(n-1) + 1)*(n*2) + (i%%(n-1))*2 - 2 # Marking C
      triangle.point.map.number[i, 4] = (i%/%(n-1) + 1)*(n*2) + (i%%(n-1))*2 - 2 + 1 # Marking D
      triangle.point.map.number[i, 5] = (i%/%(n-1) + 1)*(n*2) + (i%%(n-1))*2 - 2 + 1 + 1 # Marking E
      triangle.point.map.number[i, 2] = (2*i - 1) + (i%/%(n-1))*2 - 2 # Marking B
      triangle.point.map.number[i, 1] = (2*i - 1) + (i%/%(n-1))*2 - 2 + 1 # Marking A
      triangle.point.map.number[i, 6] = (2*i - 1) + (i%/%(n-1))*2 - 2 + 1 + 1 # Marking F
      
      triangle.point.map[i, (i%/%(n-1) + 1)*(n*2) + (i%%(n-1))*2 - 2] = 3 # Marking C
      triangle.point.map[i, (i%/%(n-1) + 1)*(n*2) + (i%%(n-1))*2 - 2 + 1] = 4 # Marking D
      triangle.point.map[i, (i%/%(n-1) + 1)*(n*2) + (i%%(n-1))*2 - 2 + 1 + 1] = 5 # Marking E
      triangle.point.map[i, (2*i - 1) + (i%/%(n-1))*2 - 2] = 2 # Marking B
      triangle.point.map[i, (2*i - 1) + (i%/%(n-1))*2 - 2 + 1] = 1 # Marking A
      triangle.point.map[i, (2*i - 1) + (i%/%(n-1))*2 - 2 + 1 + 1] = 6 # Marking F
    }
    else {
      triangle.point.map.number[i, 3] = (i%/%(n-1) + 1)*(n*2) + (i%%(n-1))*2 # Marking C
      triangle.point.map.number[i, 4] = (i%/%(n-1) + 1)*(n*2) + (i%%(n-1))*2 + 1 # Marking D
      triangle.point.map.number[i, 5] = (i%/%(n-1) + 1)*(n*2) + (i%%(n-1))*2 + 1 + 1 # Marking E
      triangle.point.map.number[i, 2] = (2*i - 1) + (i%/%(n-1))*2 # Marking B
      triangle.point.map.number[i, 1] = (2*i - 1) + (i%/%(n-1))*2 + 1 # Marking A
      triangle.point.map.number[i, 6] = (2*i - 1) + (i%/%(n-1))*2 + 1 + 1 # Marking F
      
      triangle.point.map[i, (i%/%(n-1) + 1)*(n*2) + (i%%(n-1))*2] = 3 # Marking C
      triangle.point.map[i, (i%/%(n-1) + 1)*(n*2) + (i%%(n-1))*2 + 1] = 4 # Marking D
      triangle.point.map[i, (i%/%(n-1) + 1)*(n*2) + (i%%(n-1))*2 + 1 + 1] = 5 # Marking E
      triangle.point.map[i, (2*i - 1) + (i%/%(n-1))*2] = 2 # Marking B
      triangle.point.map[i, (2*i - 1) + (i%/%(n-1))*2 + 1] = 1 # Marking A
      triangle.point.map[i, (2*i - 1) + (i%/%(n-1))*2 + 1 + 1] = 6 # Marking F
    }
  }
  # Marking All the Edge.1 Points
  if (i %in% bd.points) {
    # Edge.1 Marking
    if (i %in% edge.1.points[-(n+1)]){
      triangle.point.map.number[i, 6] = 2*n*(n-1) + 2*(i%%(n+1)) - 1 # Marking F
      triangle.point.map[i, 2*n*(n-1) + 2*(i%%(n+1)) - 1] = 6 # Marking F
    }
    if (i %in% edge.1.points[-1]){
      triangle.point.map.number[i, 1] = 2*n*(n-1) + 2*(i%%(edge.1.points[1])) # Marking A
      triangle.point.map.number[i, 2] = 2*n*(n-1) + 2*(i%%(edge.1.points[1])) - 1 # Marking B
      triangle.point.map[i, 2*n*(n-1) + 2*(i%%(edge.1.points[1]))] = 1 # Marking A
      triangle.point.map[i, 2*n*(n-1) + 2*(i%%(edge.1.points[1])) - 1] = 2 # Marking B
    }
    # Edge.2 Marking
    # ---Done outside the end of this loop
    # Edge.3 Marking
    if (i %in% edge.3.points[-(n+1)]) {
      triangle.point.map.number[i, 5] = 2*(i%%(edge.3.points[1])) + 2 # Marking E
      triangle.point.map.number[i, 4] = 2*(i%%(edge.3.points[1])) + 2 - 1 # Marking D
      triangle.point.map[i, 2*(i%%(edge.3.points[1])) + 2] = 5 # Marking E
      triangle.point.map[i, 2*(i%%(edge.3.points[1])) + 2 - 1] = 4 # Marking D
    }
    if (i %in% edge.3.points[-c(1,n+1)]){
      triangle.point.map.number[i, 3] = 2*(i%%(edge.3.points[1])) + 2 - 1 - 1 # Marking C
      triangle.point.map[i, 2*(i%%(edge.3.points[1])) + 2 - 1 - 1] = 3 # Marking C
    }
    # Edge.4 Marking
    # ---Done outside the end of this loop
  }
}
# Edge.2 Marking
for (i in 1:n){
  triangle.point.map.number[edge.2.points[i], 3] = i*2*n # Marking C
  triangle.point.map[edge.2.points[i], i*2*n] = 3 # Marking C
}
for (i in 2:n){
  triangle.point.map.number[edge.2.points[i], 2] = (i-1)*2*n - 1 # Marking B
  triangle.point.map.number[edge.2.points[i], 1] = (i-1)*2*n # Marking A
  triangle.point.map[edge.2.points[i], (i-1)*2*n - 1] = 2 # Marking B
  triangle.point.map[edge.2.points[i], (i-1)*2*n] = 1 # Marking A
}
# Edge.4 Marking
for (i in 2:n) {
  triangle.point.map.number[edge.4.points[i], 4] = (i-1)*2*n # Marking D
  triangle.point.map.number[edge.4.points[i], 5] = (i-1)*2*n + 1 + 1 # Marking E
  triangle.point.map.number[edge.4.points[i], 6] = (i-1)*2*n + 1 - 2*n # Marking F
  triangle.point.map[edge.4.points[i], (i-1)*2*n + 1] = 4 # Marking D
  triangle.point.map[edge.4.points[i], (i-1)*2*n + 1 + 1] = 5 # Marking E
  triangle.point.map[edge.4.points[i], (i-1)*2*n + 1 - 2*n] = 6 # Marking F
}
kable(triangle.point.map.number[1:5, 1:6], caption = "Point Association Table")
Point Association Table
2 1 102 103 104 3
4 3 104 105 106 5
6 5 106 107 108 7
8 7 108 109 110 9
10 9 110 111 112 11
# The slopes of A, B, C, D, E, F planes 
beta.ij <- c(0, 1/gap, 1/gap, 0, -1/gap, -1/gap)
gamma.ij <- c(-1/gap, 0, 1/gap, 1/gap, 0, -1/gap)

beta.slope <- function(k) {
  if (k == 0)
    return(beta.ij[1])
  else
    return(beta.ij[k])
} 
gamma.slope <- function(k) {
  if (k == 0)
    return(0)
  else
    return(gamma.ij[k])
} 

# This is our M Matrix
M <- matrix(rep(0, pts*(pts - length(c2))), nrow = (pts - length(c2)))

# Saving on Computation
triangle.point.map.beta <- matrix(rep(0, pts*nt), pts, nt)
triangle.point.map.gamma <- matrix(rep(0, pts*nt), pts, nt)

# Trying to improve computation speed
for (i in 1:pts){
  triangle.point.map.beta[i,triangle.point.map.number[i,]] <- unlist(lapply(triangle.point.map[i,triangle.point.map.number[i,]], beta.slope))
  triangle.point.map.gamma[i,triangle.point.map.number[i,]] <- unlist(lapply(triangle.point.map[i,triangle.point.map.number[i,]], gamma.slope))
}

# Filling M
for (i in 1:(pts - length(c2))) {
  for (j in 1:pts) {
    if (abs(i-j) <= 1 | abs(i-j) == n-1 | abs(i-j) == n | i %in% bd.points | j %in% bd.points) {
      M[i, j] = T.area*sum(triangle.point.map.beta[i,triangle.point.map.number[i,]]*triangle.point.map.beta[j,triangle.point.map.number[i,]] + triangle.point.map.gamma[i,triangle.point.map.number[i,]]*triangle.point.map.gamma[j,triangle.point.map.number[i,]])
    }
  }
}

kable(M[1:5, 1:5], caption = "M Matrix")
M Matrix
4 -1 0 0 0
-1 4 -1 0 0
0 -1 4 -1 0
0 0 -1 4 -1
0 0 0 -1 4
# Gauss-Jacobi Method
Solve.Gauss.Jacobi <- function(A, b, guess, n, tol){
  x <- guess
  dd <- diag(A)
  diag(A) <- rep(0, nrow(A)) 
  for (i in 1:n) {
    x_old <- x
    x <- (b - (A %*% x))/dd
    #print(t(x))
    if(sqrt(sum((x-x_old)^2)) < tol)
      return(x)
  }
  warning("Maximum Iteration Exceeded!")
  return(x)
}

# Gauss-Seidel Method
Solve.Gauss.Seidel <- function(A, b, guess, n, tol){
  x <- guess
  dd <- diag(A)
  diag(A) <- rep(0, nrow(A)) 
  for (i in 1:n) {
    x_old <- x
    for (k in 1:length(b))
      x[k] <- (b[k] - sum(A[k,]*x))/dd[k]
    #print(t(x))
    if(sqrt(sum((x-x_old)^2)) < tol)
      return(t(t(x)))
  }
  warning("Maximum Iteration Exceeded!")
  return(t(t(x)))
}
M11 <- M[1:(pts - length(c2)), 1:(pts - length(c2))]
M12 <- M[1:(pts - length(c2)), (pts - length(c2) + 1):pts]
RHS <- -M12 %*% c2
c1 <- Solve.Gauss.Seidel(M11, RHS, seq(0, 1, length.out = length(RHS)), 2000, 1e-3)
kable(head(c1), caption = "First Few Entries of c1", col.names = c("c1"))
First Few Entries of c1
c1
0.9459931
0.9496414
0.9526108
0.9551236
0.9573014
0.9592189
x1 <- seq(0, 1, length.out = n+1)
y1 <- rev(seq(0, 1, length.out = n+1))
q <- c(rev(edge.3))
for(i in 2:n){
  q <- c(q, rev(edge.4)[i],c1[((n-1)*(i-2)+1):((n-1)*(i-2)+1+(n-2))], rev(edge.2)[i])
}
q <- c(q, rev(edge.1))
soap.film <- cbind(expand.grid(x1, y1), q)
colnames(soap.film) <- c('x', 'y', 'z')
soap.film <- as_tibble(soap.film) %>%
  arrange(x,y)
z.matrix <- matrix(rep(0, (n+1)^2), n+1)
k <- 1
for (i in 1:(n+1)) {
  for (j in 1:(n+1)) {
    z.matrix[i, j] <- soap.film$z[k]
    k = k+1
  }
}
a <- mesh(x1,y1)
u <- a$x ; v <- a$y
x <- u
y <- v
z <- soap.film$z
z <- z.matrix
all.points <- tibble(x = x, y = y)
fig <- plot_ly(bd.frame %>% mutate(x = 1-x, y = 1-y), x = ~x, y = ~y, z = ~z, type = 'scatter3d', mode = 'lines+markers',
               line = list(width = 15, color = '#DA16FF'),
               marker = list(size = 5, color = '#AA0DFE'), source = "Plot3")
fig %>% add_surface(data = all.points, x = ~x, y = ~y, z = ~z)

The above visualization looks pretty similar to a soap-film. Hence, it seems. We succeeded in simulating the soap-film.